Edit:
column Columns: 3 / 54 dropdown
filter Filters dropdown
Adjust the scope
plus Add filter

Dataset of GDP and urban population of continents

1 day ago
bookmarkBookmark

This dataset is about continents, has 5 rows. It features 3 columns: continent, GDP, and urban population. The preview is ordered by population (descending) and is 100% filled with non-null values.

Dataset preview, limited to 100 rows:
citysortcountrysortpopulationsortlongitudesort
TokyoJapan31,480,498139°75′E
ShanghaiChina14,608,512121°39′E
BombayIndia12,692,71772°82′E
KarachiPakistan11,627,37867°8′E
New DelhiIndia10,928,27077°20′E
DelhiIndia10,928,27077°21′E
ManilaPhilippines10,443,877120°98′E
MoscowRussia10,381,28837°61′E
SeoulKorea10,323,448126°97′E
São PauloBrazil10,021,437-46°66′W
IstanbulTurkey9,797,53628°96′E
LagosNigeria8,789,1333°39′E
MexicoMexico8,720,916-99°13′W
JakartaIndonesia8,540,306106°82′E
New YorkUnited States8,107,916-74°0′W
KinshasaDem. Rep. Congo7,787,83215°30′E
CairoEgypt7,734,60231°25′E
LimaPeru7,646,786-77°4′W
BeijingChina7,480,601116°38′E
LondonUnited Kingdom7,421,2280°9′W
BogotáColombia7,102,602-74°6′W
DhakaBangladesh6,493,17790°40′E
LahorePakistan6,312,57674°34′E
Rio de JaneiroBrazil6,023,742-43°23′W
BaghdadIraq5,672,51644°39′E
BangkokThailand5,104,475100°50′E
BangaloreIndia4,931,60377°58′E
SantiagoChile4,837,248-70°66′W
CalcuttaIndia4,631,81988°36′E
TorontoCanada4,612,187-79°41′W
RangoonMyanmar4,477,78296°16′E
SydneyAustralia4,394,585151°20′E
MadrasIndia4,328,41680°28′E
WuhanChina4,184,206114°27′E
Saint PetersburgRussia4,039,75130°26′E
ChongqingChina3,967,028106°55′E
XianChina3,953,191108°92′E
ChengduChina3,950,437104°6′E
Los AngelesUnited States3,877,129-118°24′W
AlexandriaEgypt3,811,51229°91′E
TianjinChina3,766,207117°17′E
MelbourneAustralia3,730,212144°96′E
AhmadabadIndia3,719,93372°61′E
AbidjanCôte d'Ivoire3,692,570-4°1′W
KanoNigeria3,626,2048°51′E
CasablancaMorocco3,609,698-7°61′W
HyderabadIndia3,598,19978°47′E
IbadanNigeria3,565,8103°89′E
SingaporeSingapore3,547,809103°85′E
AnkaraTurkey3,519,17732°84′E
ShenyangChina3,512,192123°43′E
RiyadhSaudi Arabia3,469,29046°71′E
Ho Chi Minh CityVietnam3,467,426106°66′E
Cape TownSouth Africa3,433,50418°42′E
BerlinGermany3,398,36213°40′E
MontrealCanada3,268,513-73°58′W
HarbinChina3,229,883126°65′E
GuangzhouChina3,152,825113°25′E
DurbanSouth Africa3,120,34031°2′E
MadridSpain3,102,644-3°69′W
NanjingChina3,087,010118°77′E
KabulAfghanistan3,043,58969°18′E
PuneIndia2,935,96873°86′E
SuratIndia2,894,67572°90′E
ChicagoUnited States2,841,952-87°65′W
KanpurIndia2,823,52380°34′E
Umm DurmanSudan2,810,32832°43′E
LuandaAngola2,776,12513°23′E
Addis AbebaEthiopia2,757,80738°74′E
NairobiKenya2,750,56136°81′E
TaiyuanChina2,722,475112°47′E
JaipurIndia2,711,93775°81′E
SalvadorBrazil2,711,903-38°51′W
DakarSenegal2,702,820-17°43′W
Dar es SalaamTanzania2,698,65139°28′E
RomeItaly2,643,73612°48′E
MogadishuSomalia2,590,18045°36′E
JiddahSaudi Arabia2,545,72839°21′E
ChangchunChina2,537,421125°32′E
TaipeiTaiwan2,514,794121°52′E
KievUkraine2,514,22730°51′E
FaisalabadPakistan2,507,30273°8′E
IzmirTurkey2,501,89527°13′E
LakhnauIndia2,472,25080°91′E
GizehEgypt2,443,49031°21′E
FortalezaBrazil2,416,920-41°41′W
CaliColombia2,392,897-76°52′W
SurabayaIndonesia2,374,920112°75′E
Belo HorizonteBrazil2,373,255-43°93′W
MashhadIran2,307,25459°60′E
NagpurIndia2,228,19179°9′E
HarareZimbabwe2,213,70131°4′E
BrasíliaBrazil2,207,812-47°91′W
Santo DomingoDominican Republic2,202,016-69°90′W
NagoyaJapan2,191,291136°90′E
AleppoSyrian Arab Republic2,139,87837°15′E
ParisFrance2,110,6942°33′E
JinanChina2,069,266116°99′E
TangshanChina2,054,526114°70′E
DalianChina2,035,307121°60′E

Download

Size: 5 rows

Price: free

Be the first to download this dataset

Legend

dropdown Select a field

This dataset is based on data from: World Bank.

This dataset can be used under the CC BY 4.0 license.